192 research outputs found

    Multilevel regulation of growth rate in yeast revealed using systems biology

    Get PDF
    The effect of changing growth rates on the transcriptome, proteome and metabolome has been systematically studied. Measurements made under varying nutrient conditions, corresponding to biochemical pathways that correlate primarily with growth rate, reveal a central role for mitochondrial metabolism and the TOR (target of rapamycin) signaling pathway

    Combining Task-level and System-level Scheduling Modes for Mixed Criticality Systems

    Get PDF
    Different scheduling algorithms for mixed criticality systems have been recently proposed. The common denominator of these algorithms is to discard low critical tasks whenever high critical tasks are in lack of computation resources. This is achieved upon a switch of the scheduling mode from Normal to Critical. We distinguish two main categories of the algorithms: system-level mode switch and task-level mode switch. System-level mode algorithms allow low criticality (LC) tasks to execute only in normal mode. Task-level mode switch algorithms enable to switch the mode of an individual high criticality task (HC), from low (LO) to high (HI), to obtain priority over all LC tasks. This paper investigates an online scheduling algorithm for mixed-criticality systems that supports dynamic mode switches for both task level and system level. When a HC task job overruns its LC budget, then only that particular job is switched to HI mode. If the job cannot be accommodated, then the system switches to Critical mode. To accommodate for resource availability of the HC jobs, the LC tasks are degraded by stretching their periods until the Critical mode exhibiting job complete its execution. The stretching will be carried out until the resource availability is met. We have mechanized and implemented the proposed algorithm using Uppaal. To study the efficiency of our scheduling algorithm, we examine a case study and compare our results to the state of the art algorithms.Comment: \copyright 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other work

    Deep Surrogate Docking: Accelerating Automated Drug Discovery with Graph Neural Networks

    Full text link
    The process of screening molecules for desirable properties is a key step in several applications, ranging from drug discovery to material design. During the process of drug discovery specifically, protein-ligand docking, or chemical docking, is a standard in-silico scoring technique that estimates the binding affinity of molecules with a specific protein target. Recently, however, as the number of virtual molecules available to test has rapidly grown, these classical docking algorithms have created a significant computational bottleneck. We address this problem by introducing Deep Surrogate Docking (DSD), a framework that applies deep learning-based surrogate modeling to accelerate the docking process substantially. DSD can be interpreted as a formalism of several earlier surrogate prefiltering techniques, adding novel metrics and practical training practices. Specifically, we show that graph neural networks (GNNs) can serve as fast and accurate estimators of classical docking algorithms. Additionally, we introduce FiLMv2, a novel GNN architecture which we show outperforms existing state-of-the-art GNN architectures, attaining more accurate and stable performance by allowing the model to filter out irrelevant information from data more efficiently. Through extensive experimentation and analysis, we show that the DSD workflow combined with the FiLMv2 architecture provides a 9.496x speedup in molecule screening with a <3% recall error rate on an example docking task. Our open-source code is available at https://github.com/ryienh/graph-dock.Comment: Published as workshop paper at NeurIPS 2022 (AI for Science
    • …
    corecore